15th June 2016 Dr.Radhakrishnan Silverfildental Products Sdn Bhd 5, Jalan Industri 1/11, Taman Perindsutrian USJ 1, 47600 Subanag Jaya. # Re: Comparative study on Vicker's Hardness and Diametral Tensile Strength The following studies were conducted with the sample material provided. Test specimens and studies were conducted as per ISO 24234 requirements. ### Vickers Hardness Test Figure 15 shows the images of the hardness for the Silverfil amalgam and also the 2 other commercially available amalgams. The hardness test has been measured after 24 H of amalgamation. Figure 15: Images of Hardness testing (From left: a) Disperse alloy amalgam, b) SDI amalgam c) Silverfil amalgam For the Vickers microhardness (Figure 16), the ANOVA results showing significant (P=0.00) and the post hoc test (Dunnett T3) suggest that the mean of hardness is significantly different between all the 3 amalgam (P=0.000). The mean and standard deviation values VHN were Silverfil (103.1580 ± 4.38730), SDI (233.82 ± 15.68026) and Disperse alloy (175.3800 ± 8.02355). Figure 16: Vickers Micro hardness testing ### Diametral Tensile Strength There were significant difference between the 3 groups (P=0.000) for the diametral tensile (Figure 17). Subsequent post hoc test (Bonferroni procedure) reported that the mean of diametral tensile is significantly different between Silverfil and the 2 other commercial amalgams (P=0.000). The mean and standard deviation values (MPa) were Silverfil (72.7110 \pm 10.22905), SDI (39.3217 \pm 7.78812) and Disperse alloy (41.6554 \pm 7.77576). However, there was no significant difference between GS80 amalgam and Disperse alloy amalgam. **Figure 17:** Diametral Tensile Strength of 3 different amalgams. In conclusion, the Silverfil amalgam showed the highest Diametral Tensile Strength and the lowest Vickers Hardness Testing values compare to the 2 amalgams group. Note: Silverfil amalgam has been shown to have work hardening properties. Thus, the Vicker's hardness would be higher in the oral cavity due to microscopic structural changes as a result of masticatory forces. Dr Vengadaesvaran Senior Research Officer Centre For Ionics University of Malaya #### **References:** - Al-Saleh, Iman. (2011). Mercury (Hg) burden in children: The impact of dental amalgam. *Science of the Total Environment, 409*(16), 3003-3015. - Berdouses, E, Vaidyanathan, TK, Dastane, A, Weisel, C, Houpt, M, & Shey, Z. (1995). Mercury release from dental amalgams: an in vitro study under controlled chewing and brushing in an artificial mouth. *Journal of dental research*, 74(5), 1185-1193. - Bracho-Troconis, Cora, Colon, Pierre, Bartout, Jean-Dominique, & Bienvenu, Yves. (2000). Influence of thermal treatments on Ag Sn Cu powders in order to reduce mercury contents in dental amalgam. *Journal of Materials Science: Materials in Medicine*, 11(1), 1-9. - Brunthaler, A., König, F., Lucas, T., Sperr, W., & Schedle, A. (2003). Longevity of direct resin composite restorations in posterior teeth: a review. *Clinical Oral Investigations*, 7(2), 6370. - Cantekin, Kenan, Gurbuz, Taskin, Demirbuga, Sezer, Demirci, Tevfik, & Duruk, Gülsüm. (2012). Dental caries and body mass index in a sample of 12-year-old eastern Turkish children. *Journal of Dental Sciences*, 7(1), 77-80. - Cenci, M.S., Piva, E., Potrich, F., Formolo, E., Demarco, F.F., & Powers, J.M. (2004). Microleakage in bonded amalgam restorations using different adhesive materials. *Braz Dent J*, 15(1), 13-18. - Correa, MB, Peres, MA, Peres, KG, Horta, BL, Barros, AD, & Demarco, FF. (2012). Amalgam or Composite Resin? Factors influencing the choice of restorative material. *Journal of Dentistry*. - Delaviz, Yasaman, Finer, Yoav, & Santerre, J Paul. (2014). Biodegradation of resin composites and adhesives by oral bacteria and saliva: A rationale for new material designs that consider the clinical environment and treatment challenges. *Dental Materials*, 30(1), 16-32. - Dutton, Daniel J, Fyie, Ken, Faris, Peter, Brunel, Ludovic, & Emery, JC Herbert. (2013). The association between amalgam dental surfaces and urinary mercury levels in a sample of Albertans, a prevalence study. *Journal of Occupational Medicine and Toxicology*, 8(1), 22. - Fakour, H, Esmaili-Sari, A, & Zayeri, F. (2010). Scalp hair and saliva as biomarkers in determination of mercury levels in Iranian women: Amalgam as a determinant of exposure. *Journal of hazardous materials*, 177(1), 109-113. - Geier, DA, Carmody, T, Kern, JK, King, PG, & Geier, MR. (2013). A significant dose-dependent relationship between mercury exposure from dental amalgams and kidney integrity biomarkers A further assessment of the Casa Pia children's dental amalgam trial. *Human & Experimental Toxicology*, 32(4), 434-440. - Homme, Kristin G, Kern, Janet K, Haley, Boyd E, Geier, David A, King, Paul G, Sykes, Lisa K, & Geier, Mark R. (2014). New science challenges old notion that mercury dental amalgam is safe. *BioMetals*, 1-6. ## CENTRE FOR IONICS UNIVERSITY OF MALAYA - Iwasaki, Masanori, Taylor, George W, Nesse, Willem, Vissink, Arjan, Yoshihara, Akihiro, & Miyazaki, Hideo. (2012). Periodontal disease and decreased kidney function in Japanese elderly. *American Journal of Kidney Diseases*, 59(2), 202-209. - Jain, Shweta, Jain, Ashutosh Pal, Jain, Sourabh, Gupta, Om Narayan, & Vaidya, Ankur. (2013). - Nanotechnology: An emerging area in the field of dentistry. *Journal of Dental Sciences*. - Jin, Hye-Jung, Kim, Eun-Kyong, Woo, Gyeong-Ji, Im, Sang-Uk, Song, Keun-Bae, & Choi, YounHee. (2013). Impact of amalgam removal on urinary mercury concentration in children: a pilot study. *Journal of Korean Academy of Oral Health*, *37*(4), 194-199. - Kanaparthy, Rosaiah, & Kanaparthy, Aruna. (2011). The changing face of dentistry: nanotechnology. *International journal of nanomedicine*, *6*, 2799. - Kasacka, Irena, & Łapińska, Joanna. (2010). Salivary Cells in Patients with Dental Amalgam and Composite Resin Material Restorations—a Morphological Investigation. *POLISH JOURNAL OF ENVIRONMENTAL STUDIES*, 19(6), 1223-1227. - Kassim, NH Abu, Yahya, Noor Azlin, Radzi, Z, Basirun, WJ, & Ghani, AA. (2007). Silverfil: Its physical characterization. Paper presented at the 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. - Liu, J.K., Yang, X.H., & Tian, X.G. (2008). Preparation of silver/hydroxyapatite nanocomposite spheres. *Powder Technology*, *184*(1), 21-24. - Manhart, J., Chen, H., Hamm, G., & Hickel, R. (2004). Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. *Operative dentistry*, 29(5), 481. - Marek, M. (1990). The release of mercury from dental amalgam: The mechanism and in vitro testing. *Journal of Dental Research*, 69(5), 1167-1174. - Melchart, Dieter, Köhler, Wolfgang, Linde, Klaus, Zilker, Thomas, Kremers, Leo, Saller, Reinhard, & Halbach, Stefan. (2008). Biomonitoring of mercury in patients with complaints attributed to dental amalgam, healthy amalgam bearers, and amalgam-free subjects: a diagnostic study. *Clinical Toxicology*, 46(2), 133-140. - Neme, AL, Wagner, WC, & O'Brien, WJ. (1999). Effects of palladium addition on emission of mercury vapor from dental amalgam. *Dental Materials*, 15(6), 382-389. - Okabe, T, & Mitchell, RJ. (1996). Setting Reactions in Dental Amalgam Part 2. the Kinetics of Amalgamation. *Critical Reviews in Oral Biology & Medicine*, 7(1), 23-35. - Oo, Mon Mon Tin, Naing, Lin, Mani, Shani Ann, & Ismai, AR. (2011). Dental caries experience and treatment needs in the mixed dentition in North East Malaysia. *Arch Orofac Sci*, 6(2), 1-8. - Oral Health Division Ministry of Health, Malaysia. (2004). *National Oral Health Survey of Adults 2000 (NOHSA 2000):*. Oral of Health Division Ministry Health Malaysia, Putrajaya. - Oral Health Division, Ministry of Health, Malaysia. (2009). *National Oral Health Survey of School Children 2007 (NOHSS 2007): 6-Year-Old. Kuala Lumpur:*. Ministry of Health, Malaysia. - Powell, LV, Johnson, GH, & Bales, DJ. (1989). Effect of admixed indium on mercury vapor release from dental amalgam. *Journal of dental research*, 68(8), 1231-1233. - Ramasindarum, Chanthiriga, Balakrishnan, Vengadaesvaran, Kasim, Noor Hayaty Abu, & Yarmo, Mohd Ambar. (2013). Structural and Compositional Characterization of Silverfil Amalgam *Characterization and Development of Biosystems and Biomaterials* (pp. 153-166): Springer. - Rekow, ED, Fox, CH, Watson, T, & Petersen, PE. (2013). Future innovation and research in dental restorative materials. *Advances in dental research*, 25(1), 2-7. - Richardson, GM, Wilson, R., Allard, D., Purtill, C., Douma, S., & Gravière, J. (2011). Mercury exposure and risks from dental amalgam in the US population, post-2000. *Science of the Total Environment*, 409(20), 4257-4268. - Talik, E, Babiarz-Zdyb, R, & Dziedzic, A. (2005). Chemical characterization of selected high copper dental amalgams using XPS and XRD techniques. *Journal of alloys and compounds*, 398(1), 276-282. - Uçar, Yurdanur, & Brantley, William A. (2011). Biocompatibility of dental amalgams. *International journal of dentistry*, 2011. - Umer, Andaleeb, & Umer, Afsheen. (2011). Oral Health Care in Malaysia--A Review. *Pakistan Oral & Dental Journal*, 31(1). - van Dijken, J.W.V. (2010). Durability of resin composite restorations in high C-factor cavities: a 12-year follow-up. *Journal of Dentistry*, 38(6), 469-474. - Van Landuyt, KL, Hellack, B, Van Meerbeek, Bart, Peumans, Marleen, Hoet, Peter, Wiemann, M, . . . Asbach, C. (2014). Nanoparticle release from dental composites. *Acta biomaterialia*, 10(1), 365-374. - Verma, Santosh Kumar, & Chauhan, Rashi. (2013). Nanorobotics in dentistry-A Review. *Indian Journal of Dentistry*. - Yuan, Chun-Gang, Wang, Jincong, & Jin, Yi. (2012). Ultrasensitive determination of mercury in human saliva by atomic fluorescence spectrometry based on solidified floating organic drop microextraction. *Microchimica Acta*, 177(1-2), 153-158. - Zimmer, Holger, Ludwig, Heidi, Bader, Michael, Bailer, Josef, Eickholz, Peter, Staehle, Hans Jörg, & Triebig, Gerhard. (2002). Determination of mercury in blood, urine and saliva for the biological monitoring of an exposure from amalgam fillings in a group with selfreported adverse health effects. *International journal of hygiene and environmental health*, 205(3), 205-211.